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1. A paper by Hartmann [ 1 1, and also a number of subsequent investiga~
tions (for example, [ 2 1), contained studies of the flow of a viscous
electrically-conducting fluld between parallel plane walls under the con-
dition that all the parameters are unchanged in the direction of the
stream. This restriction, in particular so far as the magnetic field is
concerned, can be waived and we then obtain a new exact solution of the
equa{ions of magnetohydrodynamics more general than the solutions of [ 1]
and [21].

The fundamental equations are

oV )
p (G (VD) V) = — Up* - nAY 4 x (BB (r.1)
?g% +(VV)H = (HY)V +roH (1.2)
divV =40, divH =0 {1.8)
where
pr*=p+pH? /8, x =y /4, k= c?/4mop

and the remainder of the notation is conventional. We shall seek a solu-
tion of the form

vx::v(y), vy::vz-—:O, szHx(ry y), Hy:Hg(I, y)’ HZ:G’ P'x}"(x; y)

This solution corresponds to steady flow in the direction of the x-
axis in the presence of a certain, as yet undetersined, plane magnetic
field. The unknown functions obviously satisfy the following system of
equations .
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ap* oH, aHx) ” 1
e =K<Hx7:z:_+HU—6y , 4w (1.4)
ap* r OH, oH,, .
3 :x(Hx - +Hu—ay> (1.5)
oH 6Hy i
v—ax—=Hyv'+)\AHx, L =7\AH!, (1.6)

dH 0H

ot oy =0 @7

Let us introduce in these equations the vector potential of the mag-
netic field A, setting

H,=0A |8y, H = —0A]ox.

Then eliminating p* from (1.4) and (1.5) and integrating Equations (1.6)
with respect to r and y respectively, we obtain the nonlinear system

0A
x”‘“"_—_DéA(;‘l'y‘?) +np =0, iy =aNA 4+ E (18)

where the constant E is proportional to the z-component of the vector of
the electric field and, in the general case, is not equal to zero. If we
now eliminate vy, taking account of the supplementary condition dv/dx = O,
we obtain two equations which have to be simultaneously satisfied by the
potential A

D(NA, A) 03 ()\AA+E) 0 OAMA+E
Dy Thop\odjoe )=V Bz 64 jer

=9 (1.9)

It is not difficult to see that these relations are fulfilled if
A=—zH,(y) + 1) (1.10)

where Hy and y are determined from the joint system of two equations.
Other solutions for A apparently do not exist, since the first equation
(1.8),can, by substitution for AA from the second equation (1.8), be
put into the form

o x (8AN? | w D(3A ]9z, A)
= G) ¥+ R D e =0 (tan
and only (1,10) ensures the independence of these coefficients from =x.

The solution (1.10) reduces to Hartmann’s solution [ 1] when Hb =
constant.

2. Substituting the expression (1.10) into Equation (1.11) and into
the second equation (1.8), we obtain
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ree 2% Hoz ’ x Hoz ’ .

% ~ 27 ——5‘—,;‘(7> v=20 .0

—oHy= A (—zHy" +1") + E (2.2)
From the latter equation it follows that H,” = 0, i.e. Hy = hy + L

and h and hn are constants, which moreover are assumed to be given. Equa-
tion (2.1) then has the genersl integral [3 ]

v = Hy (C1us® 4 Cauqus + Caus?) (2.3)
where

uy =1, (mHe?/4h), us=K, (mH?/4kh), m= V=/kq

Let us now find from Equation (2.2) the quantity y” which determines
the longitudinal component of the field H, = — hx + y’, remembering that
Ey 1
1':0‘—T~TSvHody (2.4)

To carry out the quadratures in (2.4) we make use of the formulas

S #4138 () dz =2 [1-/,’ (5)— 1,2 (2) — E}:—z L, (z) K, (2) — ,,—i' Kyl (Z)]
{50, Koy, @) d2 = 2 1, (2) Koy, () — 1y, (2) Koy, ()] (2.5)
| 2% K2 ) dz = 2 [Ky 2) — Ko} (2)]
which are derived by the second method of Lommsel [4 ] taking account of
the recurrence formulas for I,(:z) and K, (z) and the relation
K, () =n[I_,()—1,(2)] | 2sin v=.
With the help of (2.5), we find that

Ey H& 2V2 2
T'=CO—";\_y“2—h%‘[Cl(u1”—wl“— Z wlwz-—‘,ﬁrwz’>+

+ Cg (uluz — 1D1W2) + C; (u22 —— w;’)] (26)
where
wy =1, (mH® | 4h), wy = K, (mHg? | 4h)

Formulas (2.3) and (2.6) contain five constants C; (i =1, ..., 4)
and E, four of which are determined from the boundary conditions for
velocity and the longitudinal component of the field l:. One constant 1is
related to the pressure gradiemnt. For clarification of this relatiomship

let us substitute H} = Hy, By =- xh+ y’; into Equations (1.4) and (1.5);
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we obtain

ap* ap*
2y = %@+ Hyy" —hy) £ w0, o= xhHo (2.7

Differentiating the second equation with respect to x we obtain
32p*/3xdy = 0, i.e. dp*/dx is independent of y. The first equation (2.7)
can be presented in the form

f(z) =% (Hey" —hY') + "  (f(z) = ap"/ Or — nxh?) (2.8)

The right-hand side of (2.8) depends only on y, therefore f(x) = f, =
constant. After substituting in (2.8) the expressions we have found for
v(y) and y’(y), all the terms in Cl' C2 and C, diasappear, and as a result
we have

fo=—x%(Ehy + Cirh) (2.9)

The pressure p* can be calculated from the equations

»

. )
o __, (Ehg + Cyhh + zh?), a”y = xh (hy + ho) (2.40)

9z

by two quadratures to within an additive constant Pe*

2472 2,2

. R h?y hx

Hence, the purely hydrodynamic pressure p is found as p* - Hz/Bn.
i

3. Imposing the appropriate boundary conditions, from the genersal
formulas (2.3), (2.6) and (2.11) we can obtain solutions of problems con-
cerning flow between moving or fixed parallel walls, generalising the
results of the papers [1.2 ] to the case when the transverse component
of the field is linearly dependent upon the transverse coordinate. Below
we shall consider only the limiting case of flow in a half-space.

We shall take as given the values of the velocity and the longitudinal
component of the field on the boundary of the half-space and at infinmity,
denoting them respectively by

U, H, (0)=7"(0)—he, v, H =" —h= (h >0, h >0)
From the asymptotic behavior [4 ] of the functions uy and v, at large

positive values of the argument and v > 0 (3.4

¢ 4y — 1 . /" _ 4yt — 1
1,(z2) ~ Vo [1— gz —i—o(z"):], K, (z) ~ l/zz e z[1+—sz—+o(z‘4):l
it follows that
H0u12 - OO, Houlltz _ 0. 1101122 — 0, flosulz — O, I{oaugz — O, H03w12 — QO

Holwe? =0, He® (wqus — wywy) ~ 0 when y — oo (Hy — o0)
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Therefore, requiring that v and y' be bounded as y - oo, we obtain
C1 = E= 0, i,e,

Ho3
v = Ho (Couqus + Caus®), 7 =Cg¢— 273‘\ {Ca (uyuy — wyws) + Cs (ug? — we?)} (3.2

with y = 0. Calculating C,, C; and ¢, from the boundary conditionms, we
find eventually that

o UHj [wae® — (1 4 N) ugo?} ugies + [(1 + N) ugoligg ~ wyoweo] to®
T ke UggtWag {UrotWeo — UzeWio)

(3.3)
TH® [wag? — (1 4 N) ug?] (wytea — wywg) + [(1+ N) trotine— wioWao] (ue® — w3?)
ho® Nugowgy (1z0We0 — UgWio) (3 4)

(= (0) — ¥oy's N =2kAT [ B2 L)

~
[Xe o4

i e —
l""“ioo

Here uso and w,, are the values of u
(Ho S ho)-

; and »; at the boundary y = 0

Let us now pass to the limit when A » 0., Making use of the asymptotic
formulas (3.1), we obtain the solution in the form

v=U —mhl (1 —¢ ™), Y= Yoy’ 4 DM (3.5)
Here, in the limiting case, v is different from zero, and
U—v
i 2 = mh (3.6)

If we consider the solution of the same problem with kh = 0, starting
with Equations (2.1) and (2.2), we find first of all that [1,21]
E Cih C C
2 = Oy + Cae™heY L Cop™ MoVt o €y — _?T}? — ...{X_"g — 2 gmhey ,..‘fx by (3.7

mi m

Hence
E+Clh0=30, C»ZSO, C;:ﬁ?)oo, C‘:TOOI’ Cﬁ:U*voo

Moreover, from the second of Equations (3.7) it follows that Cs<= aAl,

Accordingly, we again arrive at the solution (3.5) and Equation (3.6)
which connect the four boundary conditions of the problem. Equation (3.6)
for the particular case y’(O) = 0 was presented without derivation in
[5], which contained a study of unsteady flow in a half-space and the
limiting steady flow.

In a similar manner we can also consider the problem in the case h<0.
However, this involves a more precise analysis of the asymptotic pro-
perties of eylindrical functions for large negative values of the argu-
ment. We notice, moreover, that in the case of different signs of A and
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h0 the quantity Ho vanishes when y = - ho/h, but the expressions (3.3)
and (3.4) still remain bounded.

In conclusion, we mention that the point of the present paper is

essentially to find plane magnetic fields whose presence makes possible
the plane rectilinear motion of a fluid (uz = v(y), v,=v_= 0), As a
result we have found a field of the form W = (y (y) — hx)i + (hy + ho)j.
This solution belongs to an extremely broad class of exact solutions of
the equations of magnetohydrodynamics which were recently discovered and
investigated in general terms in a paper by Lin [6 ] on the basis of the
formal requirements in the structure of the vectors V, B and V p*,
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