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1. A paper by Hartmann [l I, and also a number of subsequent iavestigs- 
tions (for exsagpla, c 2 ‘I ). contained studies of the flow of 8 viscous 
efeatrically-conducting fluid between parsllel plane walls under the con- 
dition that 811 the paraaeters are unchanged in the direction of the 
stream. This restriction, in particulsr so far 8s the magnetic field is 
concerned, can be waived and we then obtain a new exact solution of the 
equations of magnetohydrod~namfcs more general than the solutfons of [l 1 
and [ 2 I. 

The fund&mental equations are 

p 

at + (VT) H = (H\JI) V + h&H 

div V = 0, dir H = 0 

where 

and the remainder of the notation is conventional. We shall seek 8 solu- 
tion of the form 

u, = v ty,, vv ~fl uz = 0, cr, = H, ix, y), lil, = H, 4x9 Y), Hz = 0, P*== p*fx, Y) 

This solution corresponds to steads flow in the direction of the x- 
&xi8 in the presence of a certain, as set undetermined, plane magnetic 
field. The unknown functions obviously satisfy the following system of 
equations. 
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ape r a*, 
zzx t H~ ax - + *, ‘2) 

a*, 
v - = HIIv’ + AAH,, 

a*, 
ax v- =ln\H, ax 

(1.5) 

(1.6) 

Let us introduce in 
netic field A, setting 

a*, an, 

ax +F=O (i.i) 

these equations the vector potential of the mag- 

H,=aA/ay, H,=--A/ax. 

Then eliminating p* from (1.4) and (1.5) and integrating Equations (1.6) 
with respect to I and y respectively, we obtain the nonlinear system 

D(AA, A) 
x D(x,y) +-qv”‘=O, v&xAA+E (1.8) 

where the constant B is proportional to the z-component of the vector of 
the electric field and. in the general case, is not equal to zero. If we 
now eliminate v, taking account of the supplementary condition dv/& = 0, 
we obtain two equations which have to be simultaneously satisfied by the 
potential A 

D(AAv -4) a3 
* D(x,y) +‘dy3 ( U.A+E 

aA/ax > =o, 
a AnA+E 
3% aAjax =O (1 .q 

It is not difficult to see that these relations are fulfilled if 

A = - x*, (Y) + r (Y) (1.10) 

where He and y are determined from the joint system of two equations. 
Other solutions for A apparently do not exist, since the first equation 
(l.l).can, by substitution for hA from the second equation (1.8). be 
put into the form 

D(aAIar. AjvsO 
D (xv Y) 

(l.!ir 

and only (1.10) ensures the independence of these coefficients from X. 

The solution (1.10) reduoes to Hartmann’s solution [ 1 1 when H,, = 
constant. 

2. Substituting the expression (1.10) into Equation (1.11) and into 
the second equation (1.8). we obtain 
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v=o (2.1) 

--zJH~=A(--~H~“+~“)+ E (2.2) 

Frau the latter equation it follow that He” = 0, i.e. A,, = hy + hg 

and h and hg are constanta. which moreover are assuaed to be given. Equa- 

tion (2.1) then haa the general integral f.3 1 

rhere 
v = Ho (Cd + Gwa + CSQ?) (2.3) 

UI = ‘I,, (mHo’ I 4h), US = K,,, (mHoa I4h), m= I/x/AT 

Let us nou find from Equation (2.2) the quantity y’ which determines 
the lougitudinal component oi’ the field iig = - hr + y’, remembering that 

” 8, =O: 

7 ‘SC,_ (2.4) 

To carry oat the quadrature8 in (2.4) we make une of the fOruula8 

2% I$ (z) dz = z”¶ 
2v’2- 

I,,,’ (z) - LJ,’ (z) - 7 I,,,(z) K.,,(z) - + L K*J? (z) 
3 

z”’ I,,, (z) K,,, (z) dz = z “’ I$, (z) K,,,(z) - Ia,, (z) K*J, (+I (2.5) 

s 
z”‘K,,~ (z) dz = z”* IK,,Jz) - KS,; (z)] 

rhlch are derived by the second method of mumel [4 1 taking amount of 
the recurrence formulas for G(Z) and E,,(Z) and the relation 

K, (z) = TC [l_, (z) - I, (z)] / 2 sin VIE. 

glth the help of (2.5). ue find that 

EY Hoa 2j/z 2 
f=c,-X--uk u+w+~W’W2--q$-wa =-I- > 

+ G (w~--w%?) + G P4z2--7m 
I 

(2.6) 

where 
WI = 1% @Hoa I W, wz = K.,, (mHoa / 4h) 

Formulas (2.3) and (2.6) contain fire concrtants Ci (i = 1, . . . , 4 ) 
and X. roar or which are determined from the boundary conditions for 
velocltj aud the longitudinal component of the field EL. One con&ant is 
related to the pressure gradient. Por alarificatioa of this relatiou8hiR 
let us subatitnte HY = Rgr 8, = - rh + y ‘; into Euuatlons (1.4) and (1.5): 
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we obtain 

w aP* 
-jjg=%(xh~+Hoy”-hhy’)+7p”, q&Ho (2.7) 

Differentiating the second equation with respect to x we obtain 

&P/&ay = 0, i.e. dp*/ax is Independent of y. The first eunatica (2.7) 

can be presented in the form 

f (5) - x (HOT” - hy’) + u)v* (f (2) = a$/ ax -x7%) (2.2) 

The right-hand side of (2.8) dependti only on y, therefore f(x) = f0 = 

constant. After substituting in (2.8) the expressions we have found rcr 

o(y) and y’(y), all the term8 in Cl, C2 and C, disappear. and as a result 

we have 

fo = - x (Eho + C&s) (2.9) 

The pressure p* can be calculated from the equations 

dp’ 
- = - x (Eho + C,hh + ZIP), 
ax 

8P’ 
ay = xh (hy + ho) (2.10). 

by two quadrature8 to within an additive constant pO* : 

p*=po*+X 
[ 

y +hhoy-- y - (Eho + C,hh) z] (2.11) 

Hence, the purely hydrodynamic pressure p is found as p* - pA2/8n. 

3. Imposing the appropriate boundary conditions, from the general 

formulas (2.31, (2.6) and (2.11) we can obtain solutions of problems ccn- 

cerning flow between moving or fixed parallel walls. generalising the 

results of the papers [ 1.2 1 to the case when the transverse component 

of the field is linearly dependent upon the transverse coordinate. Below 

we shall consider only the limiting case of flow in a half-space. 

We shall take as given the values of the velocity and the longitudinal 

component of the field on the boundary of the half-space and at infinity, 

denoting them respectively by 

U, H, (0) = 7’ (0) - hx, voo, H,, = T_’ - hx (h > 0, ho > 0) 

From the asymptotic behavior 14 I of the functions ui and ui at large 

positive values of the argument and v > 0 
(3.1) 

it follows that 

Hou12 -+ co, Houlu2 --. 0, Houz2 -f 0, FIos~12 + CO, 1s03u22 + 0, fio3w12 -_, CO 

Ho3w22 -. 0, Ho3 (~1~2 - ~1~2) -+ 0 when y --t 03 (HO -+ m) 
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Therefore. requiring that v and y’ be bounded as y 3 00, we obtain 
C, = E= 0, i.e. 

y= Ho (C2w2 + m-422), (3.2) 

with vm = 0. calculating cp C3 and C, from the boundary conditions, we 
find eventually that 

UHO [W2O2 - (1 i_ N)uzn2} UlU2 + [(I f n;) ~10~20--wPJ201 4 
*ZZ----- 

h0 Uao%o (UlOzL'20 - kz0~10) 
(3.3) 

Here uio and wiO are the values of ui and si at the boundary y = 0 
(He = h,). 

Let us now pass to the limit when h-+ 0. Making use of the asymptotic 
formulas (3.11, we obtain the solution in the form 

v==u-- nzhr’ ( 1 - e-mtt*lJ) ( y = Toor I_ fe--mM (3.5) 

Here, in the limiting case, v_, is different from zero, and 

If we consider the solutiom of the aame problem with 6 = 0. starting 
with Equations (2.1) and (2.2), we find first of all that il.2 f 

Hence 

E + &ho = 0, C2 = 0, Cl = VW, Cc=y*‘, G~==lJ--Vm 

Moreover, from tbe second of Equations (3. ?) it follows that C3 = rkr. 

Accordingly, we sgain arrive at the solution (3.5) and Equation (3.6) 
which coanect the four boundary conditions of the problem. Equation (3.6) 
for the particular case y’(O) = 0 was presented without derivation in 
[5 1, which contained a study of unsteady flow in a balf-space and the 
limiting steady flow. 

In a similar manner we can also consider the problem in the case b<6. 
However, this involves a more precise analysis of the aW6PtOtic pro- 
perties of cylindrical functfoas for large negative values of the argu- 
ment. We notice, moreover, that in the case of different signs of h and 
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he the quantity He vanishes when y = - h,/h, but the expressions (3.3) 

and (3.4) still remain bounded. 

In conclusion, we mention that the point of the present paper is 

essentially to find plane magnetic fields whose presence makes possible 

the plane rectilinear motion of 8 fluid (ux = U(Y), vy = vZ = 0). As a 

result we have found a field of the form H = (y’(y) - hr)i + (hy + h,) j. 
This solution belongs to an extremely broad class of exact solutions of 

the equations of magnetohydrodynamics which were recently discovered and 

investigated in general terms in a paper by Lin [6 I on the basis of the 

formal requirements in the structure of the vectors V. A and v p*. 
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